Search for Long-Lived Particles Decaying to the Z⁰ Boson Adam Scott CDF/UCSB DPF 2004 Direct Searches For New Physics #### Motivation - What I want: - Same as what everyone wants - To find what physics lies beyond the Standard Model - Alright, but how? - Many possible theoretical and experimental signatures to choose from - Theoretical: - Higgs - SUSY - Extra dimensions - ... - Experimental: - photons - leptons - neutrinos (E_T) - quarks (jets) - gauge bosons: Z⁰ and W[±] #### What We Do - Our approach is to look at the gauge bosons for evidence of new physics - We focus on new physics that couples to the \mathbb{Z}^0 - $X \rightarrow Z^0$ - Theoretically motivated - Might expect to see new physics to couple to heavy particles more strongly than the light ones - Experimentally clean - Two leptons that reconstruct to the Z⁰ mass has little background - The dominant background is from Standard Model Z⁰'s #### Standard Model Z⁰ - To be sensitive to X → Z⁰, must distinguish the Z⁰ from new physics with the Standard Model Z⁰ - What do Standard Model Z⁰ events look like? - Z^0 has low p_T - Events have little other activity in them (no jets, no \mathbf{L}_{T}) - Z⁰ has short lifetime ## New Physics Couplings to Z⁰ - To be sensitive to X → Z⁰, must distinguish the Z⁰ from new physics with the Standard Model Z⁰ - What do Standard Model Z⁰ events look like? - Z^0 has low p_T - Events have little other activity in them (no jets, no \not _T) - Z⁰ has short lifetime - What would Z⁰ new physics events look like? - Z^0 has $high p_T$ - Events *a lot* of other activity (many jets, large \mathbf{L}_{T}) - Z⁰ parents (might) have *long* lifetime ## Long-Lived Particle Decaying to Z⁰ - Experimentally clean - Vertex dileptons from Z⁰'s - Negligible background from actual displaced vertices - Dominant background is from tracking mistakes - Theoretically motivated - Existing (and perhaps many non-existing) models predict a long-lived Z⁰ parent #### Let's Do It! - Convention: - L_{xy} = distance in transverse plane from beam to dilepton intersection - Use transverse quantities because they are easier to measure - L_{xy} sign definition - Motivation: - Tracking mistakes are symmetric in L_{xy} - Signal has predominantly positive L_{xy} - Search for excess above background at positive L_{xy} - Negative L_{xy} gives a cross-check of the background - Use $Z^0 \rightarrow \mu\mu$ channel - Plan to use $Z^0 \rightarrow ee$ channel next #### Selection Criteria - Selection Motivation: - Clean sample of Z⁰'s - Well-measured tracks - High efficiency for signal - Look for large L_{xy} - Calibrated cuts and L_{xy} calculation with $J/\psi \rightarrow \mu\mu$'s - Displaced vertices from B meson decay - Two important cuts: - $\Delta \phi$ cut - Z⁰ boson p_T cut | Two well-identified high p _T muons | | | |---|--|--| | Within Z^0 mass peak: $81 < M_{\mu\mu} < 101 \text{ GeV}$ | | | | Tracking quality cuts to reduce mistakes | | | | Cosmic Rejection Cuts | | | | | | | | $L_{xy} > 0.1 \text{ cm}$ | | | | | | | | Z^0 boson $p_T > 30 \text{ GeV}$ | | | | $L_{xy} > 0.03$ cm | | | ## $\Delta \phi$ cut - Due to the back-to-back nature of Z^0 events, even small mistakes in tracking can lead to large mistakes in L_{xy} - Cut at: $\Delta \phi < 175 \deg$ - Rejects 99% of large L_{xy} tracking mistake background above 0.1 cm - 50 % efficient on Standard Model Z⁰'s - 90 % efficient on signal sample # Z⁰ Boson p_T Cut - Can use the Z⁰ transverse momentum to reject Standard Model background - Increases sensitivity to smaller lifetimes - Cut at: $$Z^0 p_T > 30 \; GeV$$ $$L_{xv} > 0.03 \; cm$$ - Do not optimize heavily to retain model independence - Use it as optional cut - Look at L_{xy} distribution with and without the cut ## Acceptance × Efficiency - Have calculated acceptance × efficiency of signal - Used a b' model - Note: Assumes BR(b' \rightarrow b Z⁰) = 1, and includes BR(Z $\rightarrow \mu\mu$) ## Backgrounds - Negligible backgrounds from: - Cosmics - QCD (semileptonic B decays to muons) - Dominant background from: - Tracking mistakes from Standard Model Z⁰ events - Difficult to measure - Use simulated Monte Carlo - \bullet Can cross-check the background measurement with the data in the negative L_{xy} control region | | No Z^0 p_T cut | $Z^0 p_T > 30 \text{ GeV}$ | |-------------|------------------------|----------------------------| | Background: | 0.72 ± 0.27 events | 1.1 ± 0.8 events | #### The Data - 2 events in signal region - Background: 0.72 ± 0.27 events - No events is negative L_{xy} control region - 3 events in signal region - Background: 1.1 ± 0.8 events - No events is negative L_{xy} control region ## Signal Events - Have 2+3 events in signal regions - Can look at events displays to find other information consistent with the signal or background hypothesis - In the case of the signal: - Should have other activity in the event - Additional jets, etc. - In the case of the b' \rightarrow b \mathbb{Z}^0 signal: - b jets - Jets from other Z⁰ $L_{xy} > 0.1$ cm, without the Z^0 p_T cut CDF Run II Preliminary run 155365 event 1953250 $L_{xy} > 0.1$ cm, without the Z^0 p_T cut #### CDF Run II Preliminary $L_{xy} > 0.03$ cm, with the Z^0 $p_T > 30$ GeV cut CDF Run II Preliminary run 162462 event 880227 $L_{xy} > 0.03$ cm, with the Z^0 $p_T > 30$ GeV cut #### CDF Run II Preliminary ## Limit - No significant excess of signal above background - Set a 95 % confidence limit on the b' model using Pythia at LO ## Limit – Lifetime vs. Mass • At $m_{b'} = 150$ GeV, exclude at 95 % confidence: $$2.0 < c\tau < 70 \text{ mm}$$ $0.55 < c\tau < 52 \text{ mm}$ - At $c\tau = 10$ mm, exclude at 95 % confidence: m_b , < 174 GeV - Model only valid if $m_{b'} < m_{t}$ - More generally, we exclude a region in mass and lifetime parameter space #### Conclusions - We have completed a search and set a limit on long-lived particles decaying to Z⁰'s at CDF in the dimuon channel - Will now look at dielectrons - Will use experience gained from dimuon channel - Have greater acceptance for electrons - Can do more searches using Z⁰ bosons! - And a lot more tools to use... - What would Z⁰ new physics events look like? - Z^0 has $high p_T$ - Events a lot of other activity (many jets, large E_T) - Z⁰ parents (might) have *long* lifetime